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This year is the golden anniversary of the theory of superconductivity of Bardeen, Cooper and Schrieffer (BCS theory). The 
BCS theory finds wide applicability in quantum field theory including high energy particle physics, nuclear matter, quantum 
chromodynamics, superfluid 3He and unconventional superconductors including high Tc superconductors. Here we shall 
review a few aspects of unconventional superconductors. Very recent development on half-quantum vortices (HQV) and 
Majorana fermions are briefly touched. 
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1. Introduction 
 

The BCS theory [1] is one of the most beautiful 
theories in the last century. It not only has described most 
of experimental facts about s-wave superconductors, the 
basic concept is applied to particle physics, nuclear 
physics etc. Also after the discovery of 3He in 1972, most 
of its characteristics are interpreted in terms of p-wave 
BCS superconductivity [2–5]. 

Since 1979 there appears a new class of 
superconductors: heavy fermion superconductors, organic 
molecular superconductors, high Tc cuprate 
superconductors, Sr2RuO4 etc. An early review on these 
new superconductors,” unconventional superconductors” 
is found in [6]. Around 1994, d-wave symmetry of high Tc 
cuprate superconductors is established through the 
powerful angle resolved photoelectron spectra (ARPES) 
[7] and the elegant Josephson interferometry [8,9]. Also 
E2u or f-wave symmetry of superconductivity in UPt3 is 
deduced from the thermal conductivity and the shift in 
NMR [10–12]. Further a few people started to analyze the 
BCS theory of d-wave superconductivity. In particular, 
Volovik [13] has succeeded in calculating the quasiparticle 
density of states in the vortex state of d-wave 
superconductors. The striking √H dependent specific heat 
is subsequently detected in the optimally doped YBCO 
[14,15], LSCO [16] and Sr2RuO4 [17,18]. Note contrary to 
the claim made in [19], the specific heat data in Sr2RuO4 is 
fully consistent with the chiral f-wave superconductor 
[20]. Volovik’s method is extended into a variety of 
directions, a) scaling relation [21,22], b) thermal 
conductivity, c) for arbitrary field orientation and d) for a 
variety of unconventional superconductors [20]. Since 
2001, in a brilliant series of experiments Izawa et al. has 
succeeded in identifying the gap symmetries of Sr2RuO4 
[23], CeCoIn5 [24], κ-(ET)2Cu(NCS)2 [25], YNi2B2C [26], 
PrOs4Sb12 [27,28] and UPd2Al3 [29,30]. These gap 
symmetries are shown in Fig. 1. From this and others we 
construct the list of known symmetries of nodal 
superconductors in Table 1. More details on Volovik’s 
approach and its applications see [20]. 

Table 1. 
 

quasi 1D systems   
Bechgaard salts 

(TMTSF)2X, (TMTTF)2X 
with X=PF6, ClO4, AsF6 

Triplet [31] chiral f-
wave?32 

quasi 2D systems   
Sr2RuO4 triplet [19] chiral f-wave 

[23] 
CeCoIn5, κ-(ET)2X with 

X=Cu(NCS)2, 
CuCN(CN)2Br, high Tc 

cuprates 

singlet d-wave 

UPd2Al3 singlet g-wave 
[29,30] 

URu2Si2 UNi2Al3 CePt3Si triplet(most 
likely) 

? 

3D systems   
UPt3 [12] triplet E2u or 

Y3,±2(θ,φ) 
YNi2B2C singlet s+g-wave 

PrOs4Sb12
27,28 triplet p+h-wave 

 
In the following we shall review a few topics on the 

further development of the BCS theory. 
 

 
 

Fig. 1. Order parameters from top left: d-wave - high-Tc 
cuprates,CeCoIn5, _-(ET)2Cu(NCS)2; chiral f-wave - 
Sr2RuO4;g-wave - UPd2Al3; s+g-wave - YNi2B2C;              
p+h-wave, PrOs4Sb12 A-phase; p+h-wave, PrOs4Sb12 B- 
                                          phase. 
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2. Bogoliubov de gennes (bdg) equation 
 

The BCS theory for unconventional superconductors 
is most readily formulated in terms of the quantum field 
theory [33] or the Nambu-Gor’kov Green’s function 
[34,35]. This method is exploited in 20. The Bogoliubov 
de Gennes equation is introduced in 1964 [36–38]. In 
particular Caroli et al [37] have calculated the bound state 
spectrum around a single vortex in s-wave superconductor. 

As is well known, the theory of type II 
superconductors with quantized vortices is developed by 
Abrikosov [39] in the frame work of the 
phenomenological Ginsburg Landau theory [40]. After the 
BCS theory Gorkov and de Gennes [38,41] derived the 
Ginsburg Landau theory in the vicinity of T = Tc, where 
|Δ(r)|/Tc <<1. As it turns out that all nodal superconductors 
appear to belong to the type II superconductors and then 
Abrikosov’s vortex is the most ubiquitous topological 
defects in nodal superconductors [42]. The Bogoliubov de 
Gennes equation for unconventional superconductors is 
written as 
 

Eu(r, k) = ξku(r, k) + Δ(r)f(k)v(r, k)       (1) 
 

Ev(r, k) = −ξkv(r, k) + Δ*(r)f(k)u(r, k)   (2) 
 

where ξk = −1/2m(�∇ + ieA)2 −μ and f(k) = p−2
F (∂2

x − 
∂2

y) for d-wave superconductors [43]. 
Now let us consider the bound states around a single 
vortex in unconventional superconductors. For a singlet 
superconductor, we can assume that 
 

Δ(r) = eiφtanh(r/ξ)                (3) 
 

in good approximation where ξ ≈ v/Δ and v is the Fermi 
velocity. Then following Caroli et al [37], the bound state 
spectrum of singlet superconductors is given by 
 

εn = ω0(n + 1/2)                    (4) 
 

with n = 0, ±1, ±2, ... and 
 

ω0 = ),(2
0

),(2
0

1

)()((
)(/)((

krK

krK
F

ekfrdr
ekrfrdrp

−∞
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,                      (5) 

where 
 
K(r,k)=

))/(ln(cosh)()/tanh()()()(
0 0

111 ξξξ rkfvdrrkfvdrrkfv
r r

FFF ∫ ∫ Δ=Δ≈Δ −−−    

(6) 
 

Inserting K(r, k) into Eq. , we obtain 
 

     ω0=
FFp Ε
Δ

=
Δ 212

πξπ
  .                     (7) 

 
 

Here (...) means average over the Fermi surface. Eq. 4 
for singlet superconductors has been obtained by Kopnin 
and Volovik [44]. These are fully consistent with the 
numerical solution of BdG equation for d-wave 
superconductors given in [45,46]. On the other hand, for 
triplet superconductors, Kopnin and Salomaa [47] find 
 

      εn = ω0n                             (8) 
 
with n = 0, ±1, ±2 and ω0 = Δ2/EF . For a triplet 
superconductor, we have the zero mode with ε0 = 0 for            
n = 0. First of all the zero mode is common to the triplet 
superconductors with equal spin pairing (ESP) like 
superfluid 3He-A, UPt3 (E2u) and Sr2RuO4 (chiral                    
f-wave). More recently Ivanov [48] has shown that the 
zero mode is associated with the Majorana fermion [49–
51]. These bound state associated with vortices and their 
role in the vortex dynamics are well handled in a text book 
by Kopnin [52]. Unfortunately, however, Kopnin appears 
to neglect the extended states or the delocalized states in 
the vortex state in unconventional superconductors 
discussed for example in [20]. Indeed it is well known that 
the low temperature properties of nodal superconductors 
are dominated by delocalized states. Therefore we should 
conclude that the treatment of the transport properties in 
[52] is inadequate and unrealistic. 

To summarize the bound state spectrum around a 
single vortex in unconventional superconductors is very 
similar to the one found in s-wave superconductors [37,38] 
and appears to depend little on the direction of the 
magnetic field. In other words the specific heat associated 
with the bound states depend little on field orientation. 
Therefore the angle dependent magnetospecific heat 
should be dominated by the extended states as discussed in 
[20]. More recently we have analyzed the entropy carried 
by vortices (Nernts effect) in unconventional 
superconductors and found that it is very similar to the one 
in s-wave superconductors [53]. 
 
 

3. Half quantum vortices (hqv) 
 

The half quantum vortices (HQV) in superfluid 3He-A 
has been speculated since 1976 [54-56]. The order 
parameter of superfluid 3He-A is characterised by two unit 
vectors: l the chiral vector and d spin vector [2–4]. In order 
to realize HQV in superfluid 3He-A the uniform l texture is 
required, which is realized in a principle by the parallel 
plate geometry. In particular when the gap D between 2 
plates is less than 2.3ξD ∼ 23 μm, where ξD (∼10μm) is the 
dipole coherence length, there will be no l texture between 
the parallel plates [57,58]. In spite of the intensive search 
of HQV by the Helsinki group no HQV has been seen 
until recently [59,60]. Recently Yamashita et al 61 has 
reported a surprising NMR satellite seen in the rotating 
superfluid 3He-A in the parallel plate geometry at LT24 
conference at Orlando, Florida. Unlike all earlier 
experiments, the gap between their parallel plates is 
D∼10μm, which is adequate to realize the uniform l 
texture. Indeed we have succeeded in describing the NMR 
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satellite in terms of HQV [62]. The HQV in triplet 
superconductors have been invoked in order to interprete 
the strong flux pinning observed in some of triplet 
superconductors like UPt3, Sr2RuO4 and U1−xThxBe13 by 
Mota et al [63–66]. We would like to present a 
microscopic analysis of HQV in UPt3, Sr2RuO4 [67]. First 
of all the superconducting order parameters in the B phase 
of UPt3 are characterised by l and d as in superfluid 3He-A 
[12,19]. Further l is fixed parallel to the crystalline c axis. 
Also in the absence of magnetic field l || d very similar to 
the superfluid 3He-A, though it is believed that this 
equilibrium configuration is due to the spin orbit 
interaction and not due to the nuclear dipole interaction. 
Nevertheless we use ξD ∼1μm to refer this length scale. 
Similarly in a high magnetic field d ⊥ H is realized. For 
the related length scale we use ξH, which is very analogous 
to superfluid 3He-A [42]. The HQV are most readily 
described in terms of the texture free energy [62,66] 
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and ξ−2 D′ = ξ−2 D − ξ−2 H , and χN, c, ρs, ρsp and ρ 0

s  are the 
triplet spin susceptibility in the normal state, the spin wave 
velocity, the superfluid density, the spin superfluid density 
and the unrenormalized superfluid density. Further F1 and 
F a

1 are Landau’s Fermi liquid coefficients. Here we limit 
ourselves to the case for H ║ z, though the present 
formalism can be extended for arbitrary field orientations. 

Now let us divide the 2D space perpendicular to the 
magnetic field into circles with radius a, which enclose a 
single Abrikosov’s vortices. Then the upper critical field 
Hc2(t) is related to the coherence length ξ(t) [38] 

 

  
)(2

)( 2
0

2 t
tHc πξ

φ
=                        (11) 

 
with φ0 = 2.07×107Txm2 the flux quantum. Further, the 
radius of the circle at H = Hc2(t) is given by a=√2ξ(t). In 
other words, a > √2ξ(t) in the vortex state. Perhaps it is 
important to notice that K >>1 in heavy fermion 
superconductors except in the vicinity of T ∼ Tc. If we 
ignore F a

1  for simplicity, K(t) is given approximately by 
 

  
1

0 )(1)(1*(1*)(
−

⎭
⎬
⎫

⎩
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⎧ −−+= t

m
m

m
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where m*/m = 20 and 16 (γ band) for UPt3 and Sr2RuO4 

[68,69]. Further ρ 0
s (t) for the E2u state (UPt3) and chiral            

f-state (Sr2RuO4) are well approximated by the one for a d-
wave superconductors70: 
 

320 02.0355.0647.01)( tttts +−−≈ρ  .    (13) 
 

Then with the help of Eq. (13), K(t) for UPt3 and 
Sr2RuO4 are obtained, which are shown in Fig. 2. Here we 
took the model of chiral f-wave superconductors [20,42]. 
If we had taken instead, the chiral p-wave superconductor 
model as in19, the temperature dependence of K(t) would 
be very different. Now the energy of a single Abrikosov 
vortex in a circle with radius a is given by 
 

     )/ln(2 ξπχ acFA Ν=    .                  (14) 
 

 

 
 

Fig.. 2. The K(t) function is shown for UPt3 (a) and Sr2RuO4 (b). 
 
 
 

On the other hand, a bound pair of HQV separated by 
R within the same circle is given by 
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Also for K >> 1, R is well approximated by R/2a = 

1/12 ++ KK  as in62,67. Inserting the R in Eq. (13), 
we find 
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Finally FA = FBP gives 
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In particular assuming ξH = ξD at H = H*(t) < Hc2(T ), 
we find 
 

[ ] 1
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Now making use of K(t) in Fig. 2, we find H*(t)/Hc2(t) 
for UPt3 and Sr2RuO4, which is shown is Fig. 3. Looking 
at Fig. 3, it appears that B-C phase boundary in UPt3 
corresponds to H = H*(t). Unfortunately, no similar phase 
diagram is worked out for Sr2RuO4. But the present 
analysis suggests the existence of a similar phase boundary 
for Sr2RuO4 as well. Surprisingly the curves for UPt3 and 
Sr2RuO4 look exactly the same. 
 

 
 

Fig. 3. H*(t)/Hc2(t) is plotted as a function if t, the red dashed 
line is for UPt3. 

 
 

 
Fig. 4. The local magnetic field generated by a pair of HQV is 

shown. 
 
 

4. Quasiparticle density of states 
 

We have not worked out the quasiparticle density of 
states associated with HQV in UPt3 and Sr2RuO4, we shall 
refer to Ivanov’s work, where he considered the case d⊥l. 
Under this condition, his result is easily extended for other 
triplet superconductors with EPS. Then the quasiparticle 
density of states is given by 
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where N(r,E) is the one for a single vortex and R =Rx. For 
Sr2RuO4, N(r,E) was calculated in [71]. The result is very 
consistent with STM data by Lupien et al [72]. On the 
other hand in the realistic situation d ⊥ l is broken at least 
in the vicinities of HQV. For example d has a tendency to 
become parallel to l, which will increase the core size of d-
disgyration. Perhaps the vortex core size increases from ξ 
to ξD′ . This will change the energy scale from Δ2/EF to 
Δ2/EF (ξ/ξD′ ); the much more density of states around the 
vortex cores. However, we do not expect Eq. (17) is much 
modified qualitatively. Similarly the local magnetic field 
generated by a pair of HQV is given by 
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where K0(z) is the modified Bessel function. Eq. (18) is 
sketched in Fig. 4. Here the distance between 2 HQV is R 
∼3micron. We believe both the quasiparticle density of 
states and the local magnetic field should be accessible to 
STM73,74, and the micromagnetometry9,75. However these 
experiments have to be carried out below 300mK, which 
appears to be impossible in the present moment. 
 
 

Acknowledgments 
 

In the course of the present work, we have benefitted 
from discussions with Stephan Haas, Takao Mizusaki, 
Grisha Volovik and Minoru Yamashita. K.M. thanks the 
hospitality of the Max-Planck-Institute for the Physics of 
Complex Systems, where a part of this work was done. 
 
 

References  
 
 
   [1] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys.  
        Rev. Y061175 (1957). 
  [2] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1971). 
[3] D. Vollhardt, P. W¨olfle, The Superfluid Phases of  
      Helium Three, Taylor & Francis, London (1990). 
 



BCS variations 
 

1623

[4] G. E. Volovik Exotic Properties of Superfluid Helium  
      3, World Scientific, Singapore 1992 
[5] M. Monastyrsky, Topology of Gange Fields and  
      Condensed Matter, Plenum, New York (1993) 
[6] M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239  
      (1991) 
[7] A. Damuscelli, Z. Houssian, Z. X. Shen, Rev. Mod.  
      Phys. 75, 473 (2003) 

  [8] D. J. van Harlingen, Rev. Mod. Phys 67, 515 (1995). 
[9] C. C. Tsuei, J. R. Kirtley, Rev. Mod. Phys 72, 969  
       (2000). 

[10] B. Lussier, B. Ellmann, L. Taillefer, Phys. Rev. Lett  
        23, 3294 (1994). 
[11] H. Tou, Y. Kitaska, K. Asayama, N. Kimura, Y.  
       Ohnuki, Y. Yamamoto & K. Maegawa, Phys. Rev.  
        Lett 77, 1374 (1994) 
[12] R. Joynt, L. Taillefer, Rev. Mod. Phys. 74, 235  
        (2002). 
[13] G. E. Volovik, JETP Lett. 58, 496 (1993) 
[14] K. A. Moler, D. J. Baar, J. S. Urbach, Ruixing Liang,  
        W. N. Hardy, A. Kapitulnik, Phys. Rev. Lett. 73,  
        2744 (1994) 
[15] B. Revaz et al, Phys. Rev. Lett. 80, 3364 (1998) 
[16] J. Chen et al, Phys. Rev. B 58, 14753 (1998) 
[17] S. Nishizaki, Y. Maeno and Z. Mao, J. Phys. Soc.  
        Japan 69, 57 (2000) 
[18] H. Won, K. Maki, Europhys. Lett 52, 421 (2000) 
[19] A. P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657  
        (2003). 
[20] H. Won et al Lectures in the Physics of hihgly  
        correlated electron systems IX edited by A. Arella  
        and F. Mancini, AIP conference proceedings 789  
         (Melville 2005). 
[21] C. Kubert, P. J. Hirschfeld, Sol. Stat. Comm 705, 459  
        (1998). 
[22] H. Won, K. Maki, Europhys. Lett 56, 729 (2001) 
[23] K. Izawa, H. Takahashi, H. Yamaguchi, Yuji  
        Matsuda, M. Suzuki, T. Sasaki, T. Fukase,  
        Y. Yoshida, R. Settai, Y. Onuki, Phys. Rev. Lett.  
        86, 2653 (2001) 
[24] K. Izawa, H. Yamaguchi, Yuji Matsuda, H. Shishido,  
        R. Settai, Y. Onuki, Phys. Rev. Lett. 87, 057002  
         (2001). 
[25] K. Izawa, H. Yamaguchi, T. Sasaki, and Yuji  
        Matsuda, Phys. Rev. Lett. 88, 027002 (2002) 
[26] K. Izawa, K. Kamata, Y. Nakajima, Y. Matsuda, T.  
        Watanabe, M. Nohara, H. Takagi, P. Thalmeier, and  
         K. Maki, Phys. Rev. Lett. 89, 137006 (2002) 
[27] K. Izawa, Y. Nakajima, J. Goryo, Y. Matsuda, S.  
        Osaki, H. Sugawara, H. Sato, P. Thalmeier, and K.  
        Maki, Phys. Rev. Lett. 90, 117001 (2003). 
[28] K. Maki, S. Haas, D. Parker, H. Won, K. Izawa, 
        Y. Matsuda, Europhys. Lett 56, 729 (2004) 
[29] H. Won, D. Parker, K. Maki, T. Watanabe, K. Izawa, 
        Y. Matsuda, Phys. Rev. B 70, 140509 R (2004). 
[30] T. Watanabe, K. Izawa, Y. Kasahara, Y. Haga, Y.  
        Onuki, P. Thalmeier, K. Maki and Y. Matsuda, Phys.  
        Rev. B 70, 184502 (2004). 
[31] I. J. Lee, S. E. Brown, M. J. Naughton, J. Phys. Soc.  
        Jpn 75, 051011 (2006). 

[32] A. Domingues Folgueras and K. Maki, Cond- 
        Mat/06010065 Physica (in press). 
[33] A. A. Abrikosov, L. P. Gor’kov and I. E.  
       Dzyaloshinskii, Method of Quantum Field Theory of  
       Statistical Physics . 
[34] L. P. Gor’kov, JETP 34, 5005 (1958). 
[35] Y. Nambu, Phys. Rev 117, 648 (1960). 
[36] N. N. Bogoliubov, V. V. Tolmachev and D. V.  
        Shirkov, A New Method in the Theory of  
        Superconductivity Acad. Science USSR (English  
        translation: Consultants Bureau Inc, New York  
         (1959)). 
[37] C. Caroli, P. G. de Gennes, J. Matricon, Phys. Lett 9,  
        307 (1964). 
[38] P. G. de Gennes Superconductivity of Metals and  
        Alloys Benjamin, New York 1966 (reprinted in  
        Percus Book, Reading 1999). 
[39] A. A. Abrikosov, Soviet Phys. JETP 5, 1174 (1957). 
[40] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Fiz. 20,  
         1064 (1950). 
[41] L. P. Gor’kov, Soviet Phys. JETP 9, 1364 (1959). 
[42] K. Maki, S. Haas, D. Parker, H. Won, Topology in  
        Ordered Phases, edited by S. Tanda et al (World  
        Scientific, Singapore 2006). 
[43] Y. Morita, M. Kohmoto and K. Maki, Europhys.Lett.  
         70, 207 (1997). 
[44] N. B. Kopnin, G. E. Volovik, Phys. Rev. Lett  
        79, 1377 (1997). 
[45] M. Kato, K. Maki, Europhys Lett 54, 800 (2001). 
[46] M. Kato, K. Maki, Prog. Theor. Phys (Kyoto) 107,  
        941 (2002). 
[47] N. B. Kopnin, M. M. Salomaa, Phys. Rev. B 44, 9667  
         (1991). 
[48] D. A. Ivanov, Phys. Rev. Lett 86, 268 (2002). 
[49] E. Majorana, Nuovo Cimento 14, 171 (1937). 
[50] C. J. Bolech, E. Demler, Phys. Rev. Lett. 98, 23700  
        (2007). 
[51] S. Tewari, S. Das Sarma, D-H. Lee, Phys. Rev. Lett  
        99, 03701 (2007). 
[52] N. Kopnin, Theory of Nonequilibrium  
        Superconductivity Oxford Press (Oxford 2001). 
[53] Y. Morita, K. Maki, Phys. Stats. Sol (B) in press. 
[54] G. E. Volovik, V. P. Mineev, JETP Lett 24, 561  
         (1976). 
[55] M. Cross, W. F. Brinkman, J. Low Temp. Phy 27,  
        683 (1977). 
[56] M. M. Salomaa, G. E. Volovik, Phys. Rev. Lett 55,  
        1184 (1985). 
[57] V. Ambegaokar, P. G. de Gennes and D. Rainer, Phys  
         Rev A 9, 2676 (1974). 
[58] R. Bruinsma, K. Maki, J. Low Temp Phys 34, 344  
        (1976). 
[59] P. Hakonen, O. V. Lousasmaa, J. Simla, Physica B  
        160, 1 (1989). 
[60] G. E. Volovik, J. Low Temp Phys 121, 357 (2000). 
[61] Minoru Yamashita,, Ken Izumina, Akira Matsubara,  
        Yutaka Sasaki, Osamu Ishikawa, Takeo Takagi,  
        Minoru Kubota, Takao Mizusaki, LT24 Proceeding,  
        AIP conference proceedings 850, 185 (2005). 
[62] H. Y. Kee, K. Maki, Cond-Mat/0702344, Europhys.  



Kazumi Maki, Hae-Young Kee 
 

1624 

        Lett. (in press). 
[63] A. Amann, A. C. Mota, M. B. Maple and H. von  
        Lohneysen, Phys Rev. B 57, 3640 (1998). 
[64] E. Dumont, A. C. Mota, Phys. Rev. B 65, 144519  
         (2004). 
[65] M. Sigrist, D. E. Agterberg, Prog. Theor. Phys  
        (Kyoto) 101, 1651 (1999). 
[66] H. Y. Kee, Y. B. Kim, K. Maki, Phys Rev. B 62, R  
        9275 (2000). 
[67] H. Y. Kee, K. Maki, in preparation. 
[68] M. R. Norman, R. O. Alhers, A. M. Boring, N. E.  
        Christensen, Solid State Comm 68, 245 (1998). 
[69] C. B. Bergermann, J. S. Brooks, L. Balicas, A. P.  
        Mackenzie, S. R. Julian, Z. Q. Mao, Y. Maeno,  
        Physica B 294, 371 (2001). 
[70] H. Won, K. Maki, Phys. Rev. B 49, 1397 (1994). 

[71] M. Kato, H. Suematsu and K. Maki, Physica C 480- 
        410, 335 (2004). 
[72] C. Lupien, S. K. Dutta, B. I. Barker, Y. Maeno, J. C.  
        Davis, Cond-Mat/0503317 (2005). 
[73] I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, O.  
        Fischer, Phys. Rev. Lett 75, 2754 (1995). 
[74] O. Fischer, M. Kugler, I. Maggio-Aprile, O. Berthod,  
        Ch. Renner, Rev. Mod. Phys. 79, 353 (2007). 
[75] J. R. Kirtley, H. B. Ketchen, K. G. Staiwiaz, J. Z.  
        Shen, W. J. Gallager, S. H. Blanton, S. J. Wind, Appl  
        Phys Lett 66, 1138 (1995). 
 
 
______________________ 
*Corresponding author: kmaki@usc.edu 

 


